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ABSTRACT 
Amino  acid  replacements  in  the  peptide-binding  region  (PBR)  of  the  functional  major  histocom- 

patibility  complex (Mhc) genes  appear to be  driven by balancing  selection.  Of the  various  types of 
balancing  selection, we have  examined a model  equivalent  to  overdominance  that  confers  heterozygote 
advantage. As  discussed  by A. Robertson,  overdominance  selection  tends  to  maintain  alleles  that  have 
more or less the  same degree of heterozygote  advantage. Because  of  this  symmetry, the model  makes 
various  testable  predictions  about  the  genealogical  relationships  among  different  alleles  and  provides 
ways  of  analyzing DNA sequences  of Mhc alleles.  In  this paper, we analyze DNA sequences  of 85 
alleles  at  the HLA-A, 43, -C, -DM1 and -DQBl loci  with  respect  to the  number of  alleles  and extent of 
nucleotide  differences  at  the  PBR, as  well  as at  the  synonymous  (presumably neutral) sites. Theory 
suggests  that  the  number of  alleles that  differ  at  the  sites  targeted by selection  (presumably  the 
nonsynonymous  sites  in the PBR)  should  be  equal to the mean number of nucleotide  substitutions 
among  pairs  of  alleles.  We  also demonstrate  that  the  nucleotide  substitution rate at  the  targeted  sites 
relative  to  that of neutral sites  may  be  much larger  than 1 .  The predictions of the  presented model 
are in  surprisingly  good  agreement  with  the  actual  data  and  thus  provide  means  for  inferring  certain 
population  parameters.  For  overdominance  selection in a finite  population at equilibrium,  the  product 
of selection  intensity (s) against  homozygotes and  the  effective  population size ( N )  is estimated  to  be 
350-3000, being  largest at the B locus  and  smallest  at the C locus.  We argue  that N is  of the order of 
lo5 and s is  several percent  at  most, if the mutation  rate  per  site  per  generation is lo-'. 

T HE functional  major histocompatibility complex 
(Mhc) genes, or more specifically the  parts cod- 

ing  for  the  peptide  (antigen)-binding  region  (PBR) of 
the molecule, are believed to be  subjected to balancing 
selection (DOHERTY and ZINKERNAGEL 1975; HUGHES 
and NEI 1988, 1989). The fundamental  observations 
that led to this conclusion are (1) that  there exist a 
large  number of alleles at functional Mhc loci (KLEIN 
1986); (2) allele frequencies are distributed  more or 
less evenly (HEDRICK and THOMSON 1983); (3) alleles 
often differ at a number of nucleotide sites (KLEIN 
1986); (4) certain alleles of one species are generally 
more similar to  certain alleles of another species than 
they  are  to  other alleles of the first species (the so- 
called trans-species mode of polymorphism in KLEIN 
1980; FIGUEROA, GUNTHER and KLEIN 1988; LAWLOR 
et al. 1988; MAYER et al. 1988; MCCONNELL et al. 
1988); (5) the  rate of nonsynonymous substitutions at 
the PBR  is higher  than  that of the synonymous sub- 
stitutions (HUGHES and NEI 1988,  1989);  and (6) many 
alleles are in strong linkage disequilibrium (KLITZ and 
THOMSON 1987). There  are some other observations 
which are suggestive of balancing selection, but  are 
controversial. These include deficiency of Mhc homo- 
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zygotes (DEGOS et al. 1974; BLACK and SALZANO 198 1 ; 
RITTE et al. 1991)  and association of certain Mhc 
alleles with diseases (KLEIN 1986,  1990; TIWARI and 
TERASAKI 1985; THOMSON 1988; HILL et al. 1991). 

By balancing selection population geneticists mean 
either  overdominance  (heterozygote  superiority in fit- 
ness), frequency-dependent selection, or diversifying 
selection that favors different genotypes in different 
environments (DOBZHANSKY 1970).  Although the 
three  forms of balancing selection are biologically 
distinguishable in some cases (NEI and HUGHES 199  l), 
there  are types of frequency-dependent and diversi- 
fying selection that  are theoretically equivalent to 
overdominance (TAKAHATA and NEI 1990; DENNIS- 
TON and CROW 1990).  These  forms may be collec- 
tively referred  to as the overdominance-type selection. 
Heterozygote  superiority of Mhc genes has thus  far 
not  been  proven  experimentally  (but see RITTE et al. 

WRIGHT (1  939)  developed  a  theory of self-sterility 
alleles in plants and derived  formulas  for  the equilib- 
rium allele frequencies, the expected  number of  seg- 
regating alleles, and heterozygosity. His theory and 
results can be applied directly to  the case of overdom- 

199 1). 
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inance selection, although homozygote lethality is not 
necessarily assumed in the  latter.  It was remarked  that 
overdominance selection is an inefficient mechanism 
for maintaining a  large number of alleles at a locus 
(LEWONTIN  1985). LEWONTIN, GINZBURG and TUL- 

JAPURKAR (1 978)  studied  stable, feasible equilibria 
under heterosis or overdominance selection and con- 
cluded  that  the  proportion of fitness arrays leading to 
such equilibria of more  than  6 or 7 alleles is vanish- 
ingly  small. However, this conclusion changes when 
new mutations are taken  into  account. Indeed,  the 
authors themselves have argued  that “As new muta- 
tions occur, they will be lost to  the population if their 
fitnesses in homozygous and heterozygous  condition 
do not lie in the  appropriate  region, while the new 
alleles will be  maintained in the population if they 
have the  appropriate fitnesses. Thus,  although few 
new mutations may have the  appropriate fitnesses, 
those  that do will be  accumulated, and it is these that 
we see  in nature.”  This  point was actually made by 
ROBERTSON (1  962)  and it was supported by computer 
simulations (MARUYAMA and NEI 1981; TAKAHATA 
and NEI 1990; SPENCER and MARKS 1988  for  the 
deterministic case). Hence, even when new mutations 
have asymmetric fitnesses, overdominance selection 
tends  to maintain only a  particular set of alleles so 
that those alleles that we observe will have symmetric 
fitness arrays.  Moreover,  the  number of such alleles 
needs  not  be small  if one assumes a  continuous  muta- 
tion  pressure (KIMURA and  CROW  1964;  Table  14.3 
in WRIGHT  1969), and this assumption is essential in 
studying  the  long-term  evolution of balanced alleles 
which could persist in a  population for tens of million 
years (KLEIN 1980; FIGUEROA, GUNTHER and KLEIN 
1988;  LAWLOR et al. 1988; MAYER et al. 1988). There- 
fore  the symmetric overdominance-type model can 
potentially be compatible with Mhc data  comprised by 
DNA sequences of  many alleles (e .g . ,  MARSH and 
BODMER 199  1 ; ZEMMOUR and  PARHAM  199 1). 

T o  interpret  the  currently available DNA sequence 
data, it is essential to understand  the allelic relation- 
ships (allelic genealogy). One way of studying the 
allelic genealogy was suggested by TAKAHATA and 
NEI  (1990)  and TAKAHATA (1990) who based their 
arguments  on KIMURA and CROW’S (1964) model of 
infinitely many-allele mutations. This model is more 
appropriate  than  for  example,  the classical two-allele 
mutation scheme used by HUDSON and KAPLAN (1 988) 
with the  purpose of applying the coalescent process to 
neutral sites partially linked to a selected site. In this 
paper, we examine DNA sequences of human Mhc 
alleles using the theory of  allelic genealogy under 
symmetric overdominance-type selection and  the 
model of infinitely many alleles. The allelic genealogy 
has a mathematically simple structure, in particular 
about  the relationship between the  number of segre- 

gating alleles and  the  number of nucleotide  differ- 
ences between alleles. The simplicity results from 
random  extinction of existing alleles and  the assump- 
tion  that  mutations always produce new  allelic  lines  of 
descent. 

ALLELIC GENEALOGY 

If we are not  concerned  about  the  time scale  of 
allelic genealogy, the following consideration is suffi- 
cient to construct  the allelic relationships at a given 
locus. Under symmetric overdominance-type selec- 
tion, the allele frequencies  tend to be evenly distrib- 
uted  and  different alleles are equivalent in their  fate. 
When  a new descendant allele (DA) is produced  from 
one of the parental alleles (PA) and is incorporated 
into  a  population, the DA becomes PA and  one of the 
previous PAS becomes extinct (allelic turnover). The 
extinct line can  be the  parent itself that  produced DA. 
In a  population at equilibrium, the incorporation of 
DA and  the extinction of PA alleles are in balance and 
the  number of different alleles (n )  remains more or 
less constant. Because every PA has an  equal  proba- 
bility  of extinction, l/n,  the genealogical relationships 
among alleles (allelic genealogy) are simple (TAKA- 
HATA 1990)  (Figure I), and  are similar to those of 
randomly sampled neutral  genes (KINGMAN 1982; TA- 
V A R ~  1984; WATTERSON 1984). If the parental allele 
of DA becomes extinct,  there is no way of learning 
anything  about the bifurcation of PA and DA. Only 
when both PA and DA or their  direct lines of descent 
survive and  are present in a sample, can we make 
inferences about  their  divergence or coalescence. The 
DA is always one mutational  step away from  the PA 
under  the infinitely many-allele model. In what fol- 
lows, allelic genealogy analysis will focus on  the diver- 
gence of alleles at target sites of selection only. Such 
allele divergences are  due  to amino acid replacements 
in the PBR  of  Mhc molecules (nonsynonymous substi- 
tutions at  the  corresponding  parts of the Mhc genes). 

Suppose that we have sampled i different alleles 
from n existing alleles (i 5 n)  and have determined 
their sequences, whereby by dgeerent we mean alleles 
that  differ at  the nonsynonymous sites in the PBR. 
We restrict our sequence analyses to pairwise compar- 
isons that  do  not  require precise knowledge of the 
ancestral relationships among  the  different alleles. We 
compute  the  number ( K N )  of nonsynonymous changes 
in the PBR between any pair of alleles. For i sampled 
alleles, there  are z(i - 1)/2 values  of K N  from which 
we define  the pairwise mean number ( K g )  and  the 
largest number (Kk) .  If i = 2, K g  = Kh by definition. 
Here  and subsequently, the superscript (P or L )  stands 
for  the pairwise mean number  and  the largest number 
of changes unless otherwise specified, while the sub- 
script ( N  or S) stands for nonsynonymous and synon- 
ymous changes. The theoretical calculation assumes 
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We can  also derive the  expected  relationship  between 
K'N (Kk) and  the  corresponding  synonymous  changes 
KC ( K t )  among Mhc genes.  (Furthermore,  the  same 
relationship  can  be  derived  for  the  nonsynonymous 
changes  outside  the PBR if they are selectively neu- 
tral.)  Assume  that  the  linkage  between  the synony- 
mous  sites and PBR  within  a gene is complete  and 
that  the total rate  of  synonymous  changes is v per 
gene  per  generation. To relate KC (Kk) to KC (Kir), we 
must  define  our  model  more precisely and know  how 
rapidly  nonsynonymous  changes  occur  relative  to syn- 
onymous  changes.  We base our  considerations  on  the 
model  of  symmetric  overdominance-type selection 
studied by WRIGHT (1939), KIMURA and  CROW 
(1964), MARUYAMA  and NEI ( 1  98 l ) ,  TAKAHATA 
( 1  990) and  others. Applying  this  selection  model  to a 
finite  population, KIMURA and  CROW ( 1  964) derived 
an  approximate  formula  for  the  number  of alleles (n).  
For  our  purpose,  the  formula may be  written  as Present 

0 Extinct allelic lines 

@ Bifurcated allelic lines 

@ Allelic lines replaced by their own descendants 

FIGURE 1 .-Allelic  genealogy. In this  figure,  there  are  five  alleles 
which  are  equivalent in terms o f  reproduction. In each  allelic 
turnover,  one  of  five parental alleles (PA) produces a descendant 
allele (DA)  and  one P A  goes to extinction. T h e  allelic  turnover  rate 
is not  specified  here, but the  waiting  time  for  each  allelic  turnover 
is  exponentially  distributed with the  mean o f  a/n generations  where 
n is the  number of alleles in a population (TAKAHATA 1990). 

effectively the  infinite  site  model  without  recombina- 
tion (WATTERSON 1975) and  makes  no  correction  for 
multiple hits. T h e  correction is made  to  the  data if at  
a l l .  

T h e  expected values of K g  and K i  are  independent 
of  the topology  of  allelic  genealogy and  are given by 
the  formulas 

E{KTr] = n ( 1 )  

and 

i 2  
E { K k )  = 2n 1 - T - 7 ( i )  j=B J 

= 2n 1 - for  large n ( 9 
in which E { X j  stands  for  the  expectation  of  random 
variable X taken by its distribution  (see  APPENDIX). 
That  is, the  expected  number  of  nonsynonymous 
changes in the PBR is the  same  as  the  number  of 
different alleles in a population  and  the  largest  differ- 
ence between  a  pair  of alleles in the  sample  roughly 
equals 2(1 - l / i)  times the  number  of alleles n or 
EIK$j.  

in which S = 2Ns and M = Nu where N is the  number 
of  breeding  individuals in the  population, s the selec- 
tive disadvantage  of  homozygotes in the  overdomi- 
nance  selection  model,  and u the  nonsynonymous 
mutation  rate  per PBR per  generation. TAKAHATA 
(1990) demonstrated  that  the  divergence  time  of a 
pair  of alleles is exponentially  distributed with mean 

n3 
2 &us 

a=- 

in units of  generations.  During  this  divergence  time, 
a pair  of alleles accumulates n nonsynonymous 
changes  on  average  (see APPENDIX and Equation I) ,  
whereas  the  synonymous  sites  accumulate 2av 
changes.  For a  given  divergence  time  of alleles, the 
distribution  of  the  number  of  both  changes is approx- 
imately  Poisson  [see  APPENDIX,  also  WATTERSON 
(1975) for  the  neutral case].  Similarly to the diver- 
gence  time  between a pair  of alleles, there  are 2 4  1 - 
l / i )  generations  between  the  two  most  distantly re- 
lated alleles in the i sampled alleles. Thus w e  have 

E{KCj = 2av and E { K i j  = 4av 

For  convenience, w e  define 

8 = 2av. (6) 

If u and v are  proportional to the  number  of nonsy- 
nonymous (LN)  and  synonymous (LS)  sites and  the  per- 
site  mutation  rate ( p )  is the  same  for L,v and L.7, 8 can 
be rewritten  as Lsn"/(&LNS) by Equation 4. From 
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Equations 1 ,  2 and 5, the  ratio of nonsynonymous to 
synonymous changes is 

where  superscript Y stands  for either P or L. If the 
synonymous and nonsynonymous changes per site are 
defined by 

and 

E(K;I k& = - 
LN ' 

respectively, the  ratio (y) of k; to k; becomes 

4 s  
n2 

y = -. 

We may rewrite the above  equation as 

If n is the observed number of alleles or estimated 
from Equation 1 or 2 and if k; and k; are  computed 
from  sequence data, Equation 8 gives an  estimator  of 
S = 2Ns. An estimate of M = Nu can  then  be  obtained 
from Equation 3. 

From intraspecies variation of the Mhc, HUGHES 
and NEI (1 988) estimated the  ratio of the nonsynon- 
ymous rate in the PBR to  the synonymous rate  to be 
about 3. The ratio is equivalent to y. Here we consider 
the possibility that calculating y on  the basis  of all 
pairwise comparisons may lead to  an underestimate 
because of a difficulty in inferring extensive nonsy- 
nonymous changes in the PBR that have accumulated 
trans-specifically.  An alternative  method we propose 
here is based on the fact that  young alleles do not 
differ much in terms of K s .  For pairs of such alleles, 
the K N  can  be  expected to be relatively small and 
multiple hits to be rare so that  errors in the multiple 
hit  correction can be minimized. 

Suppose that we have identified allelic pairs with 
small values  of K s  = m and  that we also know their 
K N .  For these pairs, we obtain KN = j and K s  = m ( j  = 
1 ,  2, 3, . . . and m = 0, 1 ,  2, . . .). Our task is to find 
the conditional probability of K N  when K s  = m, and 
we denote this probability as P(KE = j ) .  Under sym- 
metric  overdominance-type selection the conditional 

probability becomes a negative binomial distribution 

P ( K E  = j )  = (9) 

( j  + m)! { 1 + 8 >,+I { n >i 
j!m! 1 + n + % l + n + %  

(see APPENDIX). The conditional mean of K;I: is then 
given by 

E ( K Z )  = 
n(l + m )  

1 + %  ' 

from which we have 

and hence another estimator of n. For instance, if  we 
happen to find  pairs of alleles that are identical at the 
synonymous sites, we set m = 0 in Equation 1 1 ,  and 
we have n = E ( K $ ) ( l  + 19). Alternatively and  more 
desirable statistically, we  may use pairs of alleles whose 
synonymous differences are in a  certain  range of Ks.  
For  pairs of alleles with 0 I K s  5 k, we have 

E ( K N  I 0 d K S  I k )  
n =  ( k  + lMk+' (12) 

1 -  
(1 + e y + 2  - ( 1  + e)@" 

(see APPENDIX). 
As Ks becomes large, the actual number of nonsy- 

nonymous  changes may not increase in such a way 
that Equation 10 predicts. The leveling-off  signifies 
that, since alleles with large values of K s  diverged long 
ago, nonsynonymous differences in their PBR  may be 
saturated.  For  this  reason, we use Equation 12 with 
small values of K s  to estimate n. 

APPLICATION TO HLA LOCI 

All pairwise  comparisons: We have applied  the 
above  theoretical results to  the sequence  data  obtained 
for  the  human HLA-A, -B, -C, - D m 1  and -DQBl  loci. 
The numbers of alleles examined at these loci are 19, 
26, 6, 19 and 15, respectively, giving a  total  number 
of 85. T o  estimate the actual  number of synonymous 
and nonsynonymous substitutions, we used the JUKES 
and CANTOR (1969) method.  In  general  the synony- 
mous differences  were small so that  no substantial 
correction was made. The correction  for nonsynony- 
mous  differences in the PBR  was a  different  matter 
and requires  caution.  For  instance, in HLA-B, K;I: does 
not increase linearly but levels off at  about 20 as K S  = 
m becomes large  (Figure 2A). Although this number 
is small compared  to  the  total  number of nonsynony- 
mous sites in the PBR ( L N  135), it may be  near  the 
saturation level because some sites in the PBR are well 
conserved (see also HUGHES and NEI 1988). If this 
were the case, some sites would have  undergone many 
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1 FIGURE 2.-A, The  pairwise mean number 

I . 
of nonsynonymous substitutions K N  in the PBR con- 

K s  = m. 

8 . ditioned  on  the  number of synonymous changes . . 

and others  no substitutions. In  order to examine this 
possibility, we carried  out a maximum parsimony 
analysis of the phylogeny of the HLA alleles by DNA- 
PARS (in PHYLIP, version 3.3, provided by J. FEL- 
SENSTEIN). It  turns  out  that  the  number of nonsynon- 
ymous substitutions varies greatly  from site to site, 
ranging  from 0 to 7, and  that these  substitutions at 
various sites are not  distributed  according to the Pois- 
son  distribution [see UZZELL and CORBIN (1 97 1) for a 
similar finding). Since the Poisson (including JUKES 
and CANTOR’S) method failed to provide the necessary 
correction  for  multiple hit substitutions, discrepancies 
among estimates of n based on Equations 1, 1  1 or 12 
could  be  expected. To avoid these discrepancies, we 
could  estimate K N  by a non-Poisson correction  method 
(JIN  and NEI 1990; TAKAHATA 199 1 b). Alternatively, 
we could use a  set of relatively young alleles for which 
both Poisson and non-Poisson methods are expected 
to make similar estimates for the actual number of 
substitutions per PBR (TAKAHATA 199 1 b). 

Disregarding the possibility that  both K i  and K g  

may be  underestimated (see the  next subsection), we 
first  examined  whether the  ratio of these two values 
is close to 2(1 - l/i) for i sampled alleles. If we could 
sample all existing alleles, the sample size would be n. 
and  the  ratio would become equal to twice the ex- 
pected heterozygosity ( H )  generated by nonsynony- 
mous changes in the PBR. This is because under 
strong symmetric overdominance-type selection n is 
equivalent to the effective number of alleles (KIMURA 
and CROW 1964), so that l/n becomes the expected 
homozygosity ( F ) .  For class I loci, the  ratio is 1.8 to 
1.9 so that H g 90-95%.  These H values are very 
close to  those  estimated  from allele frequencies (see 
Table 8.10-12 in KLEIN 1986). For class  I1 loci, on 
the  other  hand,  the  ratio is somewhat larger  than 2, 
suggesting some abnormalities in nonsynonymous 
substitutions in the putative PBR or simply reflecting 
large sampling errors  (the  ratio of Kh and K g  is shown 
to have a skewed distribution; SATTA 1992).  Nonethe- 
less, for  both class I and I1 loci, the estimated  ratio of 
K t  to KC at the synonymous sites is very close to  the 
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Table 2. Since the estimates  decrease as Ks = m 
. 11. The value of 0 for each  locus  used is given in 
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increases, we used pairs of young  alleles  whose Ks 
values  are no greater  than k. The k value  ranges 
from 6 to 10, depending on the locus (Table 3). 

20 .... ..=.....= . 
K S  

0 0 
0 10 20 30 0 2 4 6 8 1 0  

n 

"1 . . . =  

K S  

10 20 

expected value (Table 1). In other words, the actual 
allelic  genealogy is similar to that expected from the 
model  used to derive Equations 1 and 2. This may  in 
turn suggest that nonsynonymous  changes in the class 
I1 PBR are somewhat  evolutionarily different from 
those in the class I PBR (NEI and HUGHES 1991) due 
presumably to  the differences in their definition and 
structure (KLEIN 1986; BJORKMAN et al. 1987a,b; 
BROWN et al. 1988). 

The estimated  value of n based on KC is slightly 
larger than the number of different alleles at the C 
locus. At the DRBl  locus, the estimated n from KC 
values is about 16 although there are actually more 
than 25 different alleles (KLEIN, GUTKNECHT and 
FISCHER 1990). The estimate of n is 16 at  the A and 
18 at the B loci,  while the number of electrophoreti- 
cally or serologically detected alleles  is 19 and 37, 
respectively (Tables 8.10-1 1 in KLEIN 1986). These 
discordances may  be  caused by the following  factors: 
First, since the values  of K s  and KN for a given  allelic 
pair are geometrically distributed (APPENDIX), their 

variances  can  be quite large. Second, KN may  be 
underestimated for the reason mentioned above. 
Third, in contrast to  the class 1 loci, at the class  I1  loci 
K N  is subjected to larger sampling errors because  of 
the relatively  small number of nonsynonymous  sites 
(LN = 39). Moreover, the class I1 PBR  is putative and 
there is a possibility that  other sites may be subjected 
to balancing  selection or that nonselected  sites  have 
been included in the putative PBR. A failure to in- 
clude all  selected  sites  would  lead to an underestimate 
of the number of alleles. This has apparently hap- 
pened to  the DQBl alleles for which  only 10 of the 16 
putative PBR codons  were present in the partial se- 
quences shown. 

Conditional  pairwise  comparisons: In  order  to test 
whether K N  is really underestimated, we examined 
Equations 1 1 and 12. Figure 2B  shows that, except at 
the DRBl  locus, the n estimated from Equation 1 1  
tends to decrease with large values  of Ks.  Such 
a decrease can  be expected for rapidly  evolving non- 
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TABLE 1 

The pairwise  mean  and  largest  changes at  the HLA loci 

Sample A B c DRBI DQB I 

Nonsynonymous changes in 
PBR 

Sample size i 19 26 6 19 15 

?(l - l/i) 1.89 1.92 1.67 1.89 1.87 
KG 15.8 f 2.5 18.3 f 2.7 8.6 f 2.0 15.6 f 4.1 9.0 f 3.5 

I& 30.1 f 6.2 34.2 f 6.7 15.6 k 4.2  39.4 f 12.2  22.9 f 8.5 
(1 4.4) 

(36.6) 
Ratio" 1.91 1.87  1.81 2.53 2.54 

Synonymous changes in the 
whole coding regions 

kc 11.7 f 2.1 10.3 f 1.6 10.0 f 2.1 10.3 f 2.0 4.7 f 1.4 
& 22.2 f 4.9 19.8 f 4.6 16.7 f 4.2 18.7 f 4.6 9.3 f 3.5 
Ratio" 1.90 1.92 1.67 1.82 1.98 

Each sample consists of alleles that differ at least by one nonsynonymous change in the PBR  (a required condition to apply the theory of 
allelic genealogy). The sequences of DQBl-cover  only 10 out of the 16 exon 2 PBR codons, so that  the K N  value is  small (an extrapolation to 
the whole PBR  is  in parentheses). Symbol - indicates an estimate. 

a The ratio is defined as KL divided by Kp.  The (maximum) sampling errors (f) were computed from TAKAHATA and TAJIMA (1991). 

synonymous  sites in the PBR.  For instance, for the 
value  of Ks at  a class I locus to be 10, 10/(2v) = 5/ 
(Lsp)  generations would  be required  on average since 
the two  alleles diverged from each other. Recently, 
SATTA et al. (1 991) estimated p as 1.5 X 1 O-* per site 
per generation assuming the generation time  of pri- 
mates to be 15 years.  If we  use this estimate of p, we 
can compute the above allele divergence time  as 1.3 
x 1 O6 generations or 20  million  years (MY). This time 
period would  be  long enough for  a number of non- 
synonymous substitutions to occur in the PBR  of these 
alleles, so that it might  be  difficult to estimate K N  by 
the usual correction methods (NEI 1987). We there- 
fore used  pairs  of  alleles  whose Ks  values were rela- 
tively  small.  We  chose the values  of k in Equation 12 
as 6 to 10 because for higher values the conditional 
pairwise  mean  of K N  started  to decrease at all  class I 
loci. We did not choose  lower  values  because  they 
would result in a small number of  pairs compared and 
thus large sampling errors. 

The n thus estimated at each  locus (Table 2)  be- 
comes about twice  as large as that in Table l.  Also, it 
is  close to or larger than the number of  known  alleles: 
a large difference occurs at the C locus at which the 
frequency of unidentified (blank) alleles is highest 
among class I loci (KLEIN 1986). KLEIN, GUTKNECHT 
and FISCHER (1 990) listed more alleles that are distin- 
guishable by T cell  typing.  However,  alleles identified 
by serology or T cell typing do not always differ from 
each other  at  the nonsynonymous  sites in the PBR. 
For instance, DRBl*O701 and 0702  listed  in KLEIN, 
GUTKNECHT  and FISCHER (1 990) are different by the 
typing but they do not have  any change at  the nonsy- 
nonymous  sites  in the PBR. Considering many other 
uncertainties about the number of  alleles detected by 

TABLE 2 

Estimates of n based on allele pairs  with KS 5 k and  the  ratio (7) 
of the  nonsynonymous  substitution  rate  to  the  synonymous  rate 

A B C DRBl  DQBl 
Parameter (k = 10) (k = 9) (k = 9) (k = 9) ( k =  6) 

n* 19 37  9 27 17 

I 27.3 36.2 17.0 23.5 15.1 
11.7 10.3 10.0 10.3 4.7 

L N  134.3  134.8  135.6  38.9 23.6 
Ls 257.0 260.7 261.7 128.7 41.0 
i. 
h^ 

4.5 6.8 3.3 7.5 5.6 
0.044 0.038 0.037 0.074 0.103 

The i? is the same as kc in Table 1. n *, the observed number of 
alleles taken after KLEIN (1 986) for class I (Unidentified alleles are 
counted as one), KLEIN, GUTKNECHT and FISCHER (1990) for DRBl 
and M A R ~ H  and B ~ D M E R  (1991) for DQBl .  Note that the values of 
i. = kN/ks =-6L,/0LN are larger than those of HUGHIS and NEI 
( 1  988). The h corresponds to Equation 13. The sampling error for 
this n cannot be obtained by usual methods. Roughly speaking, 
however, it is of the  order of square  root of 6 under the Poisson 
approximation and this assumption is valid for  a small number of 
nucleotide differences (TAKAHATA 1991 b). 

different methods, the agreement between the num- 
ber of  alleles and that of the nonsynonymous  substi- 
tutions is impressive. 

The ratio (7) of K N  to ks was more than 6 for B and 
DRBI, about 5 for A and DQBl,  and about 3 for C 
(Table 2). These values are much larger than those 
obtained by HUGHES and NEI (1988, 1989) who  used 
all  allelic  pairs  in  smaller  samples. For the overdomi- 
nance-type  selection to be  compatible  with the ob- 
served large number of alleles, the value  of S must  be 
fairly large (WRIGHT 1939; KIMURA and CROW 1964; 
YOKOYAMA and NEI 1979; MARUYAMA and NEI 198 1 ; 
TAKAHATA and NEI 1990; TAKAHATA 1990). In this 
case, the nonsynonymous substitution rate is expected 
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TABLE 3 

Estimates of population parameters S = 2Ns and M = Nu in the 
symmetric  overdominance-type model 

Parameter A B C DRBl DQBl 

s 2371 6301 674 2929 2320 
M 0.29 0.09 0.36 0.04 0.13 
A 1.5 X lo5 4.5 X lo4 1.8 x io5 6.9 x lo4 2.2 X lo5 

The u is the per-generation mutation rate of nonsynonymous 
changes in the PBR; in the case  of  class I, u = = 1 3 5 ~ .  If  our 
previous estimate of p is used (SATTA et al. 199 1) and  one generation 
apounts to 15 years, then u = 1 O-’ X 15 X 135 = 2.0 X 1 O-6. For 
M to be about 0.4, N must he as large as 1 - 2 X lo5. If N = lo5, s 
ranges from 0.4% to 3.2%. The theory then predicts that the 
longest allelic divergence in the sample could he as much as 2a = 
1-3 X lo6 generations which amounts to 20-60 million years. 

to be much higher  than the synonymous substitution 
rate (TAKAHATA 1990, 1991b). Therefore  the large 
value of y is consistent with the overdominance-type 
model. 

The values of were used in Equation 8 to estimate 
the value of S for each locus. The selection intensity 
is different at  different loci, being  strongest at  the B 
locus ( S  X SOOO), intermediate  at  the A, DQBl and 
DRBl loci ( S  = 2000-3000), and weakest at  the C 
locus ( S  = 700). These figures  correlate well with the 
extents of polymorphism at  the loci. The M estimated 
from Equation 3  ranges  from  0.04 to  0.36  (Table 3). 

If we knew the nonsynonymous mutation rate (u) 
at the PBR, we could  estimate N and s from  the 
estimated values of M and S (Table 3). If p = 1.5 X 

(vide supra)  and  therefore u = pLN is 2 X 10“j at 
the class I PBR and 6 X 10” at  the class  I1 PBR, the 
mean value of N becomes approximately lo5 (e.g., 
KLEIN, GUTKNECHT and FISCHER 1990; TAKAHATA 
1990)  and s becomes 0.4% to 3.2%, depending  on  the 
locus. The estimate of N is about  10 times larger  than 
that based on  other  protein polymorphisms (NEI 
1987). TAKAHATA (1 99 la) discussed this discrepancy 
on the basis that Mhc polymorphism has lasted for 
tens of  million years while other  protein polymor- 
phism (which is largely neutral) is a  reflection of the 
relatively recent history of human populations. 

We can also examine the length of time alleles 
persist and hence  whether most alleles are trans-spe- 
cific. The mean divergence  time between two alleles 
(CY) is about 1 O6 generations. If  we again  take 15 years 
as  the generation  time of primates, one million gen- 
erations  amount to  15 MY. The mean time until i 
alleles coalesce to j ancestors can be  computed by 

(TAKAHATA 1990) which amounts  to 30(l/j - l/i) 
MY. Hence, several alleles could have predated  the 
human-chimpanzee  splitting, which is consistent with 

the concept of trans-species polymorphism of HLA 
alleles (KLEIN 1980; FIGUEROA, GUNTHER and KLEIN 
1988; LAWLOR et al.  1988; MAYER et al.  1988).  Of 
course,  these estimates depend  on  the assumption that 
the population has been at equilibrium  for  a suffi- 
ciently long time. Whether or not this assumption is 
valid will be  considered elsewhere (SATTA 1992). 

FURTHER ANALYSES AND  COMPUTER 
SIMULATION 

In  the previous section we were concerned with the 
expected pairwise mean distances (the  number of nu- 
cleotide substitutions) at  the selected sites in the PBR 
and synonymous (presumably neutral) sites. In this 
section, we study the distribution of the distances by 
computer simulation. Such a pairwise distribution 
does  not have the usual probabilistic meaning unless 
it is applied to pairs of alleles sampled from  unlinked, 
independent loci; the pairwise distances computed  for 
a single locus are  not  independent  and  are necessarily 
correlated in their  ancestry. Nevertheless, we may  use 
this distribution to examine the  internal consistency 
of the proposed  model. 

Following the simulation method of TAKAHATA 
(1  990), we generated  1 O4 independent genealogies 
for a sample of alleles. T o  determine  the  rate of  allelic 
turnover, we used an estimated pairwise mean dis- 
tance at  the nonsynonymous sites in the PBR  of each 
HLA gene. In each replicate, we computed the largest 
difference (dm,,) between the observed and computer- 
generated  distributions of pairwise distances using a 
statistical method similar to  the Kolmogorov-Smirnov 
test (LEDERMANN  1984).  These 1 O4 dm,, values were 
divided into 25 classes, each 0.04 wide, and a histo- 
gram was drawn. The distribution of dm,, is broad, 
with the highest peak in the interval  (0.44, 0.48). In 
this case, because the critical value of dm,, at a 95% 
confidence level is approximately  1.36/5 = 0.272 
(Figure  3; see also LEDERMANN  1984, pp. 194), it is 
concluded that  the observed  distributions  for all  loci 
are compatible with the model of symmetric overdom- 
inance-type selection. 

As mentioned  earlier, Mhc alleles differ greatly not 
only at  the nonsynonymous sites in the PBR but also 
at  the synonymous sites. In fact, some pairs of alleles 
differ at as many as 22 synonymous sites. This is a 
large number compared to  that  observed at  other loci. 
The fact that  there is only one synonymous change 
between the  human  and gorilla @-globin genes (SA- 
VATIER et al.  1987)  underscores this point. T o  dem- 
onstrate  the correlation  between synonymous and 
nonsynonymous changes, we produced  a  scatter dia- 
gram in  which individual points represent  the synon- 
ymous and nonsynonymous changes for pairs of alleles 
at a given locus. Again these variables are  not statis- 
tically independent  and  there is a positive correlation 
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FIGURE 3.-Frequency spectrum of dm,, obtained from I O 4  re- 
peated simulations. The average  number of pairwise nucleotide 
differences (e) is set as the estimated number; 15.8 for A ,  18.3 
for E ,  8.6 for C, 15.6 for DREZ, and 9.0 for DQEZ alleles. The 
value of i indicates the number of alleles sampled from each locus 
(Table 1 ) .  

between  them. To show that such a  correlation is in 
part due to linkage between synonymous and nonsy- 
nonymous sites, we generated  an allelic genealogy, 
superimposed  on it two types of mutation, synony- 
mous and nonsynonymous, and  computed  the  corre- 
lation coefficient R .  Repeating this process 1 O4 times, 
we obtained the distribution of R which we could then 
compare to  the observed values. Figure  4 shows that 
in the case of complete linkage the value of R ranges 
mostly from 0.5 to 1 .O .  By contrast, in the case of free 
recombination the value of R is concentrated in the 
range of (0, 0.3). Therefore a  high value of R (0.744 
in the case DRBl ,  for  example)  cannot  be  fortuitous, 

't 
i3 

8 
0.1 l% nccmbmtion 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Correlation coefficient 

FIGURE 4.-Histograms obtained by computer simulation and 
showing the correlation between the pairwise differences at the 
nonsynonymous sites in the PBR and those at the synonymous sites. 
These  two types of sites were assumed either  to  be in complete 
linkage or to recombine  freely. The mean pairwise differences were 
chosen as 12.1 or 10.5, depending  on synonymous or nonsynony- 
mous changes. Each histogram was obtained by lo4 repeats. 

and balancing selection at nonsynonymous sites in the 
PBR also has an effect on  the synonymous sites. 

If linkage has such substantial effects on  the accu- 
mulation of nucleotide  changes at  the synonymous 
sites, we can expect  that heterozygosity ( h )  per  nu- 
cleotide or amino acid site in regions  near  the PBR 
will be higher  than  that in the  more  remote regions 
capable of recombining with the PBR [see HUDSON, 
KREITMAN and A G U A D ~  (1 987)  and HUDSON and KA- 
PLAN (1988)  for  a  related  problem).  However, since 
the mutation rate  per synonymous site (p)  is as low as 

per generation  (HAYASHIDA and MIYATA 1983; 
LI, Luo and Wu 1985; SATTA et al. 1991), h may not 
be very large.  Quantitatively, in the absence of recom- 
bination the expected h is given by 

E(hJ  = 2 w  
1 + 2ap 

(TAKAHATA 1991a),  and  the E(hJ ranges  from  3.7% 
to lo%, depending  on  the locus (Table 2). Table 3 in 
HEDRICK et al. (1 99 1) shows that  the h values for HLA- 
A and -B loci averaged for  the non-PBR sites are lower 
than those for  the PBR sites, but  that  the observed h 
value in the non-PBR is 10-25 times higher  than  the 
0.2-0.4% h value of human insulin, P-globin, growth 
hormone,  and mitochondrial DNA (NEI  1987).  Hence 
the h at HLA-A and -B loci  is substantially increased in 
comparison to non-HLA  loci and is  in good  agreement 
with Equation  13. The variance of h is, however, so 
large that highly polymorphic as well as monomorphic 
sites can exist near  the PBR  solely by chance (KIMURA 
1983; NEI 1987). 
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DISCUSSION AND CONCLUSION 

We have shown that  the nonsynonymous substitu- 
tion rate in the PBR  may be at least twice as fast as 
that estimated by  HUGHES and NEI (1988,  1989)  and 
therefore much faster  than the synonymous substitu- 
tion  rate  (Table 3). The previous underestimates of 
the nonsynonymous substitution rate in the PBR are 
likely due  to  the difficulty in correcting extensive 
multiple hits at this site. The present results reinforce 
HUGHES  and NEI'S conclusion: the fact that  the  non- 
synonymous substitution rate is higher  than the syn- 
onymous rate provides strong evidence for balancing 
selection on Mhc polymorphism. 

SERJEANTSON (1  989)  argues  that  the Mhc polymor- 
phism can be  accounted  for by the  neutral theory [see 
KIMURA  (1968) and  (1983)  for review] and disassor- 
tative mating. As noted in CROW and KIMURA (1  970), 
however, it is difficult to imagine strongly disassorta- 
tive mating without selection. This is exemplified by 
self-sterility alleles (e.g., CLARK and KAO 199 1). Selec- 
tion against homo-allelic pollination is the cause of 
disassortative mating  despite no preference in prefer- 
tilization. The recent  demonstration of female disas- 
sortative  mating  preference in mice (POTTS, MANNING 
and  WAKELAND  1991) may be  accounted  for as a 
consequence of avoiding  deleterious effects of in- 
breeding.  However, assortative or disassortative mat- 
ing causes  less increase in homozygosity than  inbreed- 
ing.  Furthermore any mating  preference based on a 
similar or dissimilar phenotype affects only segregat- 
ing loci related directly to  that  trait (CROW and KI- 
MURA 1970).  Therefore  the Mhc itself is likely to be 
the genomic locus whose heterozygosity is of principal 
evolutionary  concern (HOWARD 1991).  In this view, 
selection is the  primary cause of Mhc polymorphism 
rather  than secondarily developed  mating  preference. 
In any case, disassortative mating responsible for a 
particular set of trans-specific alleles must also be 
trans-specific; it would have to last for as long as 10- 
20 MY because some pairs of alleles are this old. 

HILL et al. (1 99 1) have provided  evidence that HLA- 
Bw53 allele and DRBl*1302-DQB1*0501 haplotype 
are independently associated with protection  from 
severe malaria. Like mating  preference,  however, if 
coevolution between Mhc alleles and pathogens is the 
main cause of Mhc polymorphism, it must have been 
transmitted  through many speciation events (KLEIN 
199 1). Unfortunately the association of HLA-Bw53 
allele and DRBl*1302-DQB1*0501 haplotype with 
malaria was estimated to be no  more  than  10,000 
years old so that it does  not  account for  the trans- 
species mode of Mhc polymorphism. 

We have ignored the nonsynonymous changes  out- 
side the PBR against which purifying selection is 
thought  to  operate  (HUGHES  and  NEI  1988,  1989). If 
the  degree of selective constraint against alleles has 

not changed throughout  the course of evolution,  the 
rate of nonsynonymous substitutions can be expected 
to  correlate with the synonymous rate.  In fact the 
number of synonymous substitutions and  that of non- 
synonymous substitutions  outside the PBR are nearly 
the same in many pairs of alleles, implying that  the 
nonsynonymous sites in the non-PBR are conserved 
as in other loci (KIMURA 1983)  and  that  the  degree of 
selective constraint has been 1/3  for a  long  time. This 
is because there  are  about 2.7 times more nonsynon- 
ymous than synonymous sites per locus. For example, 
when A 3  at  the HLA-A locus is compared to A24, there 
are about  10 synonymous and 9 nonsynonymous sub- 
stitutions (in addition to 21 nonsynonymous substitu- 
tions in the PBR). Thus,  the  ratio of nonsynonymous 
to synonymous changes per site is about 1/3. How- 
ever,  there  are some exceptional pairs in  which the 
nonsynonymous substitutions are significantly larger 
or lower than  the synonymous substitutions: in com- 
parison of A 3   ( A 2 )  and A32   (A28) ,  there  are  about 10 
(7) synonymous substitutions,  but there  are 20 (1) 
nonsynonymous substitutions  outside the PBR. From 
a view of the  neutral  theory (KIMURA 1983), these 
deviations may be caused by changes in the  degree of 
selective constraint. Further analysis  of PBR-linked 
nonsynonymous changes will be  made elsewhere. 

Under  the overdominance-type hypothesis, there 
may be deficiency of homozygotes (deviation from 
Hardy-Weinberg  proportion) and  there may exist sub- 
stantial segregation  load, Lg (CROW and KIMURA 
1970).  This load can be expressed by Lg = SF and 
becomes 

in which equation the  right  hand side can be  derived 
from KIMURA and CROW  (1964). If we use the ob- 
served  number of alleles for n, then Lg = 0.05s for 
both DRBl  and DQBl. Even when selection is as strong 
as s = 0.1,  the L, is no  greater  than  one  percent at 
either of these loci and  the total genetic load for k 
such loci  with Lg = 0.01 becomes 1 - (1 - L,)k = 1 - 
0.9gk. Therefore, once such unparalleled polymor- 
phic loci as Mhc have evolved, constant  segregation of 
homozygotes does  not  produce any substantial genetic 
load. It was noted  long  ago by CROW (1958)  that  the 
population can reduce L, by increasing the  number  of 
alleles that  are maintained under overdominance se- 
lection. 

We have assumed that individuals in a  population 
mate at random.  However, since any natural popula- 
tion is to some extent  structured geographically, we 
must consider the effects of population subdivision. If 
we assume neutral variation and if  4Nm > 1 where  N 
stands  for the  number of breeding individuals in each 
subpopulation and m is the gene  migration rate  per 



Mhc and Balancing Selection 935 

generation,  the whole population  can be  regarded  as 
randomly  mating and  there is little local genetic dif- 
ferentiation (WRIGHT 193 1). For balanced alleles, the 
ancestry is elongated by the factor$ = 4 2 N )  relative 
to the  neutral  one so that  there is a  high probability 
that allelic lineages migrated  over various subpopula- 
tions since they diverged  from  a  common  ancestor. In 
effect,  operation of overdominance-type selection is 
equivalent to increasing N by$ (TAKAHATA 1990) so 
that  the condition for  random  mating would be 4N$m 
> 1. Since$ can be  much  larger  than 1,  the  extent of 
local genetic differentiation at balanced loci becomes 
relatively low even if the value of 4Nm does  not  greatly 
exceed 1. Compilation of gene  frequency  data (ROY- 
CHOUDHURY and NEI 1988) shows a relatively small 
extent of geographic  differentiation at HLA loci 
among human  populations,  although this does  not 
necessarily deny  the possibility of subdivided popula- 
tion  structure in the early history of hominids. 

All of these  considerations lead to the conclusion 
that  the overdominance-type  model, which is also 
appropriate  to  the case of disassortative mating (KAR- 
LIN and FELDMAN 1968; POTTS, MANNING and WAKE- 
LAND 1991), is consistent with the main features of 
Mhc polymorphism and  that  currently  there is no 
reason to reject it. As noted by DOHERTY and ZINK- 
ERNAGEL (1975)  and KLEIN (1986),  the biological 
cause of selection at  the Mhc loci must be  related  to 
the fact that  the T cells have dual specificity and  that 
they simultaneously recognize viral (as well as other) 
antigens (nonself) and Mhc molecules of  the stimulat- 
ing  and  target cells (self). 
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APPENDIX 

To derive  Equations 1 and 2, we assume equiva- 
lence of alleles in an allele turnover, by which we 
mean  that it is equally likely that all existing alleles 
can produce  a  descendant allele or become  extinct. In 
each allele turnover,  one of two things can happen. 
In some cases, the parental allele PA becomes extinct 
after  producing  descendant allele DA which is one 
mutational  step away from  the PA (event A ) .  This 
event  occurs with the probability of l / n  where n is 
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the total number of segregating alleles  in a population. 
In other cases, PA and DA both survive  while other 
P A  goes to extinction (event B).  This event occurs 
with the probability  of 1 - l /n .  We sample a set  of i 
alleles at random from n alleles segregating in a pop- 
ulation and denote  the sample  as Si. In  order  to 
consider the number of  nonsynonymous  changes (KN)  
for  a random pair of  alleles  in the sample, Si is divided 
into two  mutually  exclusive  subsets, S p  and Si-2.  The 
S p  subset contains a particular pair  of  alleles and Si-2 

contains the remaining alleles  of Si. The alleles that 
are not sampled are denoted collectively by S, i .  

We can compute the conditional probabilities that 
under event A the descendant allele DA is included in 
Sp, Si-2, or S,., 

2 
P ( D A  t S p  I A ]  = ;, P{DA t Si-pIAJ 

i - 2  =- , and P{DA t S,.i I A ]  = -. n - i  

n  n 

For event B ,  the two  alleles, PA and DA, may  be 
included in the same  subset or in different subsets. 
The conditional probability that S p  includes both PA 
and DA is 

0 
P(PA,  DA Sp I BJ  = 

L 

n(n - 1)’ 

and that S2 and Si-p each include only one of the two 
alleles is 

P(PA t Sp, DA t Si-2 I B )  

= P(DA t S p ,  PA E S & p  I B ]  = 
2(i - 2) 
n(n - 1)’ 

Likewise, we have the conditional probabilities that 
other subsets  include PA and DA 

P(PA,  DA t Scp I BJ  = 
(2 - 2)(i - 3) 

n(n- 1) ’ 

P(PA,  DA t Sn-i I B ]  = 
( n - i ) ( n - i -  1) 

n(n-  1) ’ 

P(PA E Sp ,  DA t Sn.i I B ]  = P(DA t Sp, PA t Sni I B ]  

- 2(n - i) “ 
n(n - 1) 

and 

P(PA t Si-2, DA t S,.i I B ]  

= P(DA t Si-2, PA t Sn-i I B ]  = 
(i - 2)(n - i) 

n(n - 1) * 

The divergence or coalescence  of PA and DA is ob- 
served only  when both PA and DA or their direct 
descendants are included in a given  subset  of  alleles. 

To compute the mean  of Kg, we first note  that  the 

unconditional probability that PA and DA are included 
in Si and  therefore  that coalescence  occurs in event B 
is given by 

P(PA,  DA t Si) = -. i(i - 1) 
n2 

The probability that the coalescence  occurs  in the (k 
+ 1)-th event B for  the first time is geometrically 
distributed 

i(i ,. 1) { i(i ,. 14” 
Ph = - I - -  . 

The number of nucleotide changes in Si increases by 
one only if Si contains DA. If there is no coalescence 
in Si in one allele turnover,  the probability  of DA E Si 
(a nucleotide change observed in Si) is given by 

P(DA t Si) = 
i(n - i + 1) 

n2 

and  the conditional probability that Si includes DA 
becomes 

P{DA t Si) = 
i(n - i + 1) 
n2 - i(i - 1)’ 

Hence, during k allele turnovers, the number of nu- 
cleotide changes in Si is binomially distributed and has 
the probability generating function (pd )  

i(n - i + 1)z n(n - i) 
n2 - i(i - 1) n2 - i(i - 1) 

+ 

in  which z is a dummy variable. Taking  the expecta- 
tion of the above pgfwith respect to Ph, we have 

i - 1  
n - (n - i + 1)z’ 

This is the pgfof KN in the sample  of  size i immediately 
before two  genes  in Si diverged from a common 
ancestral allele. The expected value  of KN is n/( i  - 1) 
- 1.  However,  this  value does not  include the final 
allelic divergence under event B at which the number 
of K N  necessarily  increases by one. To obtain the 
expectation of the mean  pairwise, E { K g ] ,  we set i = 2 
and  add  one to n/(i  - 1) - 1. Thus we have 

E ( K 5 )  = n. 

Note that whereas E{KCJ is the same  as the mean for 
a random pair of  alleles, their variances differ from 
each other. To obtain the variance of KC, we must 
consider the ancestral relationships  of four alleles  [see 
TAJIMA 1983; TAKAHATA and NEI (1 985) in the case 
of neutrality]. 

To study Kk,  we consider two  genes in Sp that 
coalesce  last  in the sample Si. Suppose that there  are 
k allele turnovers before any  coalescence  in Si occurs. 
In this situation, the conditional probability that K i  
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in Sp does or does  not increase in each allelic turnover 
is given by 

2(n - i + 1) 
4 = n2 - Z(2 - 1) 

or 

n(n - 2)  - (i - l)(i - 2)  
n2 - i(i - 1) 

r =  

Thus,  the pgf of K$ conditioned on  no coalescence 
during k allele turnovers becomes 

(qz + r)k. 

Again taking the expectation of the above pgf with 
respect to Ph, the unconditional  pgfbecomes 

i(i - 1 )  
2n - 2(n - i + 1)z + (i - l)(i - 2)  

and  the mean becomes 2(n - i + l)/(i(i - 1)).  After 
the first coalescence in Si, the sample size  is reduced 
to i - 1 and  the process continues until the size 
becomes 3. The mean of K$ in the whole process 
becomes 

' 2  
= 2 n  1 - -  -1: ( :) J = 3  

Finally, we derive the formulas  relating the  number 
of nonsynonymous changes (KN) to  that of synony- 
mous changes (Ks). We consider two randomly sam- 
pled alleles (i = 2). The divergence  time of such alleles 
was  shown to  be exponentially distributed with mean 
a (TAKAHATA 1990). The mutation rate  per  genera- 

tion is u and v for  the selected sites and synonymous 
sites, respectively. For a given allelic divergence  time 
t ,  KN and Ks follow  Poisson distributions with mean 
nt/a and 2vt (TAKAHATA 1990). Taking  the expecta- 
tion of random variable t with respect to  the  exponen- 
tial distribution, we have the Pgf of KN and Ks to be 
geometric 

1 
Q(zN,  zS) = 1 + n(1 - %N) + e(1 - %s) 

in which 6 = 2~yv as in the  text,  and ZN and zs are 
dummy variables. The probability Of KN = j and Ks = 
m is given by the coefficient of 2% and zy in Q ( z N ,  zs). 
Since from 

P(KN = j ,  Ks = m )  = 
(j + m)! 

(1 + 6 + n)?m! 
x jym, 

n e 
and y = x =  

1 + d + n  l + B + n '  

the probability of (KN = j ,  0 I Ks I k) is 

and 

For given values of Ks, the conditional probability of 
KN = j can be  computed by dividing P(KN = j ,  0 5 Ks 
5 k) by P ( 0  5 Ks 5 k), and  the conditional mean of 
KN is given by 

E(KN I 0 I Ks 5 k) 

(k + l)flk+' 


